skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Childs, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Shortly after 0600 UTC (midnight local time) 9 June 2020, a convective line produced severe winds across parts of northeast Colorado that caused extensive damage, especially in the town of Akron. High-resolution observations showed gusts exceeding 50 m s−1, accompanied by extremely large pressure fluctuations, including a 5-hPa pressure surge in 19 s immediately following the strongest winds and a 15-hPa pressure drop in the following 3 min. Numerical simulations of this event (using the WRF Model) and with horizontally homogeneous initial conditions (using Cloud Model 1) reveal that the severe winds in this event were associated with gravity wave dynamics. In a very stable postfrontal environment, elevated convection initiated and led to a long-lived gravity wave. Strong low-level vertical wind shear supported the amplification and eventual breaking of this wave, resulting in at least two sequential strong downbursts. This wave-breaking mechanism is different from the usual downburst mechanism associated with negative buoyancy resulting from latent cooling. The model output reproduces key features of the high-resolution observations, including similar convective structures, large temperature and pressure fluctuations, and intense near-surface wind speeds. The findings of this study reveal a series of previously unexplored mesoscale and storm-scale processes that can result in destructive winds. Significance StatementDownbursts of intense wind can produce significant damage, as was the case on 9 June 2020 in Akron, Colorado. Past research on downbursts has shown that they occur when raindrops, graupel, and hail in thunderstorms evaporate and melt, cooling the air and causing it to sink rapidly. In this research, we used numerical models of the atmosphere, along with high-resolution observations, to show that the Akron downburst was different. Unlike typical lines of thunderstorms, those responsible for the Akron macroburst produced a wave in the atmosphere, which broke, resulting in rapidly sinking air and severe surface winds. 
    more » « less
  2. Shortly after 0600 UTC (midnight local time) 9 June 2020, a convective line produced severe winds across parts of northeast Colorado that caused extensive damage, especially in the town of Akron. High-resolution observations showed gusts exceeding 50 m s−1, accompanied by extremely large pressure fluctuations, including a 5-hPa pressure surge in 19 s immediately following the strongest winds and a 15-hPa pressure drop in the following 3 min. Numerical simulations of this event (using the WRF Model) and with horizontally homogeneous initial conditions (using Cloud Model 1) reveal that the severe winds in this event were associated with gravity wave dynamics. In a very stable postfrontal environment, elevated convection initiated and led to a long-lived gravity wave. Strong low-level vertical wind shear supported the amplification and eventual breaking of this wave, resulting in at least two sequential strong downbursts. This wave-breaking mechanism is different from the usual downburst mechanism associated with negative buoyancy resulting from latent cooling. The model output reproduces key features of the high-resolution observations, including similar convective structures, large temperature and pressure fluctuations, and intense near-surface wind speeds. The findings of this study reveal a series of previously unexplored mesoscale and storm-scale processes that can result in destructive winds. Significance Statement Downbursts of intense wind can produce significant damage, as was the case on 9 June 2020 in Akron, Colorado. Past research on downbursts has shown that they occur when raindrops, graupel, and hail in thunderstorms evaporate and melt, cooling the air and causing it to sink rapidly. In this research, we used numerical models of the atmosphere, along with high-resolution observations, to show that the Akron downburst was different. Unlike typical lines of thunderstorms, those responsible for the Akron macroburst produced a wave in the atmosphere, which broke, resulting in rapidly sinking air and severe surface winds. 
    more » « less
  3. Abstract Shortly after 0600 UTC (midnight MDT) on 9 June 2020, a rapidly intensifying and elongating convective system produced a macroburst and extensive damage in the town of Akron on Colorado’s eastern Plains. Instantaneous winds were measured as high as 51.12 m s −1 at 2.3 m AGL from an eddy covariance (EC) tower, and a 50.45 m s −1 wind gust from an adjacent 10-m tower became the highest official thunderstorm wind gust ever measured in Colorado. Synoptic-scale storm motion was southerly, but surface winds were northerly in a post-frontal airmass, creating strong vertical wind shear. Extremely high-resolution temporal and spatial observations allow for a unique look at pressure and temperature tendencies accompanying the macroburst and reveal intriguing wave structures in the outflow. At 10-Hz frequency, the EC tower recorded a 5-hPa pressure surge in 19 seconds immediately following the strongest winds, and a 15-hPa pressure drop in the following three minutes. Surface temperature also rose 1.5°C in less than one minute, concurrent with the maximum wind gusts, and then fell sharply by 3.5°C in the following minute. Shifting wind direction observations and an NWS damage survey are suggestive of both radial outflow and a gust front passage, and model proximity soundings reveal a well-mixed surface layer topped by a strong inversion and large low-level vertical wind shear. Despite the greatest risk of severe winds forecast to be northeast of Colorado, convection-allowing model forecasts from 6-18 h in advance did show similar structures to what occurred, warranting further simulations to investigate the unique mesoscale and misoscale features associated with the macroburst. 
    more » « less
  4. Abstract Severe convective storms along the Front Range and eastern plains of Colorado frequently produce tornadoes and hail, leading to substantial damage and crop losses annually. Determination of future human exposure from these events must consider both changes in meteorological conditions and population dynamics. Projections of EF0 + tornadoes (on the enhanced Fujita scale) and severe [1.0+ in. (25.4+ mm)] hail reports out to the year 2100 are computed using convective parameter proxies generated from dynamically downscaled GFDL Climate Model, version 3 (GFDL CM3), output by the WRF Model for control and future climate scenarios. The proxies suggest that tornado and hail days in the region may increase by up to one tornado day and three hail days per year by 2100, with the greatest increases across northeastern Colorado. Using a spatially explicit Monte Carlo model, projected future frequency and spatial changes in tornadoes and hail are superimposed with population projections from the shared socioeconomic pathways (SSPs) to provide a range of possible scenarios for end-of-century human exposure to tornadoes and hailstorms. Changes in hazard frequency and spatial distribution may amplify human exposure up to 117% for tornadoes and 178% for hail in the region by 2100, although specific results are sensitive to uncertain combinations of future overlaps between hazard spatial distribution and population. Findings presented herein not only will provide the public, insurers, policy makers, land-use planners, and researchers with estimates of potential future tornado and hail impacts in the Front Range region, they also will allow the weather enterprise to better understand, prepare for, and communicate tornado and hail risk to eastern Colorado communities. 
    more » « less
  5. Abstract Eastern Colorado is one of the most active hail regions in the United States, and individual hailstorms routinely surpass millions of dollars in crop loss and physical damage. Fifteen semistructured interviews with eastern Colorado farmers and ranchers were conducted in the summer of 2019 to gauge perceptions of the severity and vulnerability associated with hailstorms, as well as to understand how forecasts and warnings for severe hail are received and acted upon by the agricultural community. Results reveal a correspondence between perceived and observed frequency of hailstorms in eastern Colorado and highlight financial losses from crop destruction as the greatest threat from hailstorms. In contrast to the National Weather Service defining severe hail as at least 1.0 in. (25.4 mm) in diameter, the agricultural community conceptualizes hail severity according to impacts and damage. Small hail in large volumes or driven by a strong wind are the most worrisome scenarios for farmers, because small hail can most easily strip crop heads and stalks. Larger hailstones are perceived to pose less of a threat to crops but can produce significant damage to physical equipment and injure livestock. Eastern Colorado farmers and ranchers are avid weather watchers and associate environmental cues with hailstorms in addition to receiving warning messages, primarily via alerts on mobile telephones. Hailstorms elicit feelings of dejection and anxiety in some respondents, whereas others accept hailstorms as part of the job. Increasing awareness of the agricultural perceptions of hailstorms can help the meteorological community direct hail prediction research efforts and improve risk communication to the agricultural sector. 
    more » « less
  6. Abstract A localized tornado and severe hail climatology is updated and enhanced for eastern Colorado. This region is one of the most active severe weather areas in the United States because of its location immediately east of the Rocky Mountains, intrusions of Gulf of Mexico moisture into a dry climate, and various small-scale topographically forced features such as the “Denver Cyclone.” Since the 1950s, both annual tornado and severe (≥1.0 in.; 1 in. = 25.4 mm) hail reports and days have been increasing across the area, but several nonmeteorological factors distort the record. Of note is a large population bias in the severe hail data, with reports aligned along major roadways and in cities, and several field projects contributing to an absence of (E)F0 tornado reports [on the (enhanced) Fujita scale] in the 1980s. In the more consistently observed period since 1997, tornado reports and days show a slight decreasing trend while severe hail reports and days show an increasing trend, although large variability exists on the county level. Eastern Colorado tornadoes are predominantly weak, rarely above (E)F1 intensity, and with a maximum just east of the northern urban corridor. Severe hail has a maximum along the foothills and shows a trend toward a larger ratio of significant (≥2.0 in.; ≥50.8 mm) hail to severe hail reports over time. Both tornadoes and severe hail have trended toward shorter seasons since 1997, mostly attributable to an earlier end to the season. By assessing current and historical trends from a more localized perspective, small-scale climatological features and local societal impacts are exposed—features that national climatologies can miss. 
    more » « less